

WHAT IS CLINICAL RESEARCH?

Clinical research is the comprehensive study of the safety and effectiveness of an intervention for patient care. Intervention can include medication, devices, tools, diagnostic tests, technique, and technology.

3

TERMINOLOGY

- Placebo An inactive substance or other intervention that looks the same as, and is given the same way as, an active drug or treatment being tested.
- · Control group The group that does not receive the new treatment being studied
- Experimental group The group that receives the medication/treatment being tested
- Cohort Group of people with a shared characteristic
- Target population Total group of individuals to be studied or group of interest
- Sample population Subset of the target population that is representative of the target population

- Randomized control trial (RCT) A study design that randomly assigned participants into an experimental group or a control group.
- Open label study Study participants and researchers both know which treatment is being administered.
- Double-blind study A study in which neither the participants nor the researcher(s) know which treatment/intervention participants are being administered.
- Single-blind study A study where only the researcher(s) conducting the study know which treatment/intervention the participant is receiving.

- **Proportional mortality** Proportional mortality ratio studies (PMR) utilizes the defined well recorded outcome of death and subsequent records that are maintained regarding the decedent.
- Case-crossover Relies upon an individual to act as their own control for comparison issues, thereby minimizing some potential confounders.

TYPE OF STUDY: OBSERVATIONAL

- **Cross-sectional** These studies consist of assessing a population, as represented by the study sample, <u>at a single point in time.</u>
- **Case-control** Identify study participants based on their case status, i.e. diseased or not diseased.
- **Retrospective and Prospective Cohort** Involve identifying study participants based on their exposure status and either following them...
 - through time to identify which participants develop the outcome(s) of interest (prospective) or
 - look back at data that were created in the past, prior to the development of the outcome (retrospective).

TYPE OF STUDY: OBSERVATIONAL

1	a
-	2

Study Design	Strengths	Weaknesses	Temporality
Ecological	Inexpensive, fast, easy to assign exposure levels	Inaccuracy of data, inability to control confounders, hard to identify denominator	Retrospective
Proportional Mortality	Inexpensive, fast, outcome (death) well captured	Utilize deaths only, inaccuracy of data, inability to control confounders	Retrospective
Case-crossover	Reduces some types of bias, good for acute health outcomes, cases act as own control	Selection of comparison time point difficult, hard to execute, prone to recall bias, no temporality	Retrospective
Cross-sectional	Inexpensive, timely, individualized data, ability to control for multiple confounders, can assess multiple outcomes	No temporality, not good for rare disease, poor for diseases of short duration	Retrospective
Case-control	Inexpensive, timely, individualized data, ability to control for multiple confounders, good for rare diseases, can assess multiple exposures	Cannot calculate prevalence, can only assess one outcome, poor selection of controls can introduce bias, may be hard to identify enough cases, prone to recall bias, no temporality	Retrospective
Retrospective and Prospective Cohort	Temporality shown, individualized data, ability to control for multiple confounders, assess multiple exposures/outcomes	Expensive, time intensive, not good for rare diseases	Retrospective and Prospective

Pop Quiz Time

The first documented occurrence of clinical trial methodology in the western world was found in _____?

- A. A ship's manifest
- B. The Bible
- C. The lost continent of Clinicalia
- D. An oyster shell

Get familiar with these sections

Synopsis
Study Flow
Inclusion/Exclusion
Safety
Regulatory

Protocol Components

	Study Flow	
8		
Design Intervention Randomization Visit Schedule	Methods Assessments Data collection/entry QA	Study Population and Study Staff Recruitment/Retention strategies Staff delegation and responsibilities Anticipate potential challenges

Regulatory Matters

Institutional Review Board (IRB)

- Submissions
 - Study Startup
 - Continuing Review(s)
 - Study Closeout

AE/SAE

Protocol Departures

Sponsor/ <u>Clinical Coordinating</u> Center (CCC)

- Inventory/Equipment
- Investigational Product (IP) Accountability
- Checklists
 - Study startup
 - Study visits
- Regulatory Binders
- Audits/Monitoring Visits

Informed Consent... it's a process

- Build credibility, rapport, trust
- Establish ground rules and boundaries
- Maintain established communication, expectations

- If in doubt, ask first
- Purpose is to help the potential participant <u>understand</u>
- Must have it to gather any data beyond pre-screening

Etymology (Latin): Con (together) + Sentire (feel)

Informed Consent Process

Information exchange Q and A

- Wording/phrasing matters
- Know your audience
- Keep it simple, paraphrase
- Slow down, budget for time, time varies
- Choose a quiet, confidential space
- Practice with team members and family
- The more you know, the better you feel

You only get one first impression

Good Clinical Practice

GCP helps protect participants by ensuring a high level of quality for each trial that is conducted. The standards also ensure accurate reporting of study results and protect against fraudulent or misleading data so that consumers can trust the products they use. ΔŢ

GCP Data (GCDMP) Management

Runs GCP concepts through the lens of technology to define industry standards for computer applications and database systems as well as establishing conditions for electronic signatures on eCRFs (Case Report Forms).

Tips and Tricks of the trade for RA/RC Study Staff

Rapport building starts on day 1:

- Facilitates an information highway
- Friendly but not friends

Establish internal QA procedures:

- Double check and document (temporary is fine)
- Create hard rule about this
- Identify refresher training or obsolete process

Proper Preparation Prevents Poor Performance

- Participant Data Binders
- Reviewing site staff schedules regularly (holidays)
- Thorough SOPs with contingency plans
- You can never have too many back-up plans!

23

Tips and Tricks of the trade for RA/RC Study Staff

Common Errors

- Do not pick favorites or maintain boundaries:
 - Each participant is equally deserving of your time
 - Participant self-reporting may be influenced by
 - perceived shame or disappointment
- Between the ears, is no place for data:
 - Contemporaneous documentation dictates writing/ typing it as soon as possible
 - I you didn't write it down, it didn't happen
 - Procedures to aid appropriate documentation
- <u>Exhaustively</u> complete Locator Information Form (LIF) with everyone.
 - This alone will save time, save effort, increase performance metrics, indicate to the ppt that we take study participation seriously

1. Emma M. Nellhaus , Todd H. Davies, PhD. Evolution of clinical trials throughtot history. https://mds.marshall.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1101&context=mjm

2. Emanuel EJ, Boyle CW. Assessment of Length and Readability of Informed Consent Documents for COVID-19 Vaccine Trials. JAMA Netw Open. 2021 Apr 1;4(4):e2110843. doi: 10.1001/jamanetworkopen.2021.10843. PMID: 33909052; PMCID: PMC8082317.

Sources